skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azevedo, C_D R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the design and performance of a four-phased radiofrequency (RF) carpet system for ion transport between 200–600 mbar, significantly higher than previously demonstrated RF carpet applications. The RF carpet, designed with a 160 $$\upmu $$ μ m pitch, is applied to the lateral collection of ions in xenon at pressures up to 600 mbar. We demonstrate transport efficiency of caesium ions across varying pressures, and compare with microscopic simulations made in the SIMION package. The novel use of an N-phased RF carpet can achieve ion levitation and controlled lateral motion in a denser environment than is typical for RF ion transport in gases. This feature makes such carpets strong candidates for ion transport to single ion sensors envisaged for future neutrinoless double-beta decay experiments in xenon gas. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract We investigate the performance of , a 7.5 GPU-accelerated photon propagation tool compared with a single-threaded simulation. We compare the simulations using an improved model of the gaseous time projection chamber. Performance results suggest that improves simulation speeds by between$$58.47\pm {0.02}$$ 58.47 ± 0.02 and$$181.39\pm {0.28}$$ 181.39 ± 0.28 times relative to a CPU-only simulation and these results vary between different types of GPU and CPU. A detailed comparison shows that the number of detected photons, along with their times and wavelengths, are in good agreement between and . 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. A<sc>bstract</sc> If neutrinoless double beta decay is discovered, the next natural step would be understanding the lepton number violating physics responsible for it. Several alternatives exist beyond the exchange of light neutrinos. Some of these mechanisms can be distinguished by measuring phase-space observables, namely the opening angle cosθamong the two decay electrons, and the electron energy spectra,T1andT2. In this work, we study the statistical accuracy and precision in measuring these kinematic observables in a future xenon gas detector with the added capability to precisely locate the decay vertex. For realistic detector conditions (a gas pressure of 10 bar and spatial resolution of 4 mm), we find that the average$$ \overline{\cos\ \theta } $$ cos θ ¯ and$$ \overline{T_1} $$ T 1 ¯ values can be reconstructed with a precision of 0.19 and 110 keV, respectively, assuming that only 10 neutrinoless double beta decay events are detected. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  4. Abstract The imaging of individual Ba2+ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba2+ion imaging inside a high-pressure xenon gas environment. Ba2+ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm2located inside 10 bar of xenon gas. This form of microscopy represents key ingredient in the development of barium tagging for neutrinoless double beta decay searches in136Xe. This also provides a new tool for studying the photophysics of fluorescent molecules and chemosensors at the solid-gas interface to enable bottom-up design of catalysts and sensors. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from$$^{83\textrm{m}}$$ 83 m Kr calibration electron captures ($$E\sim 45$$ E 45  keV), the position of origin of low-energy events is determined to 2 cm precision with bias$$< 1~$$ < 1 mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks ($$E\ge ~1.5$$ E 1.5  MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q$$_{\beta \beta }$$ β β in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation. 
    more » « less
  6. New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized LiD 6 target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the u and d quark, as well as the tensor charge in the measured x range are extracted. In particular, the accuracy of the d quark results is significantly improved. Published by the American Physical Society2024 
    more » « less
  7. The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190 GeV / c π beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function. Published by the American Physical Society2024 
    more » « less
  8. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less